Langchain + deepseek +neo4j 构建电影知识图谱智能问答
安装LangChain 依赖
pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
安装Neo4j
https://neo4j.com/deployment-center/ 下载安装 neo4j-community-5.26.4 解压到任意目录
安装Neo4j Apoc 插件
https://github.com/neo4j/apoc/releases?page=1 下载安装apoc-5.26.6-core.jar 复制到neo4j安装目录 plugins目录下 修改Neo4j配置文件,启用Neo4j Apoc 插件:到neo4j安装目录 plugins目录下修改\conf\neo4j.conf,添加如下两行
dbms.security.procedures.unrestricted=apoc.*
dbms.security.procedures.allowlist=apoc.*
启动Neo4j
命令行到neo4j安装目录\bin下运行:
neo4j console
langchain + deepseek +neo4j 构建电影知识图谱智能问答
import getpass
import os
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
os.environ["OPENAI_API_KEY"] = "您的DeepSeek API 秘钥"
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "您的Neo4j密码"
llm = ChatOpenAI(
model='deepseek-chat',
base_url="https://api.deepseek.com/v1"
)
graph = Neo4jGraph()
# Import movie information
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
#用Loadcsv 在线下载并构建电影知识图谱数据
graph.query(movies_query)
graph.refresh_schema() #刷新schema
chain = GraphCypherQAChain.from_llm(graph=graph,allow_dangerous_requests=True,llm=llm, verbose=True)
response = chain.invoke({"query": "What was the cast of the Casino?"}) #提问
print(response) #回答
回答如下:
Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mcypher
MATCH (p:Person)-[:ACTED_IN]->(m:Movie {title: 'Casino'})
RETURN p.name
[0m
Full Context:
[32;1m[1;3m[{'p.name': 'James Woods'}, {'p.name': 'Joe Pesci'}, {'p.name': 'Robert De Niro'}, {'p.name': 'Sharon Stone'}][0m
[1m> Finished chain.[0m
{'query': 'What was the cast of the Casino?', 'result': 'The cast of *Casino* includes James Woods, Joe Pesci, Robert De Niro, and Sharon Stone.'}